Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

One-Dimensional Quantum Confinement Effect Modulated Thermoelectric Properties in InAs Nanowires

Identifieur interne : 000457 ( Chine/Analysis ); précédent : 000456; suivant : 000458

One-Dimensional Quantum Confinement Effect Modulated Thermoelectric Properties in InAs Nanowires

Auteurs : RBID : Pascal:13-0051841

Descripteurs français

English descriptors

Abstract

We report electrical conductance and thermopower measurements on InAs nanowires synthesized by chemical vapor deposition. Gate modulation of the thermopower of individual InAs nanowires with a diameter around 20 nm is obtained over T = 40-300 K. At low temperatures (T < ∼100 K), oscillations in the thermopower and power factor concomitant with the stepwise conductance increases are observed as the gate voltage shifts the chemical potential of electrons in InAs nanowire through quasi-one-dimensional (1D) subbands. This work experimentally shows the possibility to modulate semiconductor nanowire's thermoelectric properties through ID subband formation in the diffusive transport regime for electron, a long-sought goal in nanostructured thermoelectrics research. Moreover, we point out the scattering (or disorder) induced energy level broadening as the limiting factor in smearing out the 1D confinement enhanced thermoelectric power factor.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0051841

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">One-Dimensional Quantum Confinement Effect Modulated Thermoelectric Properties in InAs Nanowires</title>
<author>
<name>YUAN TIAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Case Western Reserve University</s1>
<s2>Cleveland, Ohio 44106</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Cleveland, Ohio 44106</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences</s1>
<s2>Beijing 100190</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sakr, Mohammed R" uniqKey="Sakr M">Mohammed R. Sakr</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Case Western Reserve University</s1>
<s2>Cleveland, Ohio 44106</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Cleveland, Ohio 44106</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Physics, Faculty of Science, Alexandria University</s1>
<s3>EGY</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Égypte</country>
<wicri:noRegion>Department of Physics, Faculty of Science, Alexandria University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kinder, Jesse M" uniqKey="Kinder J">Jesse M. Kinder</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Case Western Reserve University</s1>
<s2>Cleveland, Ohio 44106</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Cleveland, Ohio 44106</wicri:noRegion>
</affiliation>
</author>
<author>
<name>DONG LIANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Case Western Reserve University</s1>
<s2>Cleveland, Ohio 44106</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Cleveland, Ohio 44106</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Macdonald, Michael J" uniqKey="Macdonald M">Michael J. Macdonald</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Case Western Reserve University</s1>
<s2>Cleveland, Ohio 44106</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Cleveland, Ohio 44106</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Qiu, Richard L J" uniqKey="Qiu R">Richard L. J. Qiu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Case Western Reserve University</s1>
<s2>Cleveland, Ohio 44106</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Cleveland, Ohio 44106</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gao, Hong Jun" uniqKey="Gao H">Hong-Jun Gao</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences</s1>
<s2>Beijing 100190</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gao, Xuan P A" uniqKey="Gao X">Xuan P. A. Gao</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Case Western Reserve University</s1>
<s2>Cleveland, Ohio 44106</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Cleveland, Ohio 44106</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0051841</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 13-0051841 INIST</idno>
<idno type="RBID">Pascal:13-0051841</idno>
<idno type="wicri:Area/Main/Corpus">001347</idno>
<idno type="wicri:Area/Main/Repository">001778</idno>
<idno type="wicri:Area/Chine/Extraction">000457</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1530-6984</idno>
<title level="j" type="abbreviated">Nano lett. : (Print)</title>
<title level="j" type="main">Nano letters : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>CVD</term>
<term>Chemical shift</term>
<term>Diffusion</term>
<term>Electrical conductance</term>
<term>Energy levels</term>
<term>Gallium tellurides</term>
<term>Gates</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>Limiting factor</term>
<term>Nanostructured materials</term>
<term>Nanostructures</term>
<term>Nanowires</term>
<term>Quantum confinement</term>
<term>Quantum effect</term>
<term>Subband</term>
<term>Thermal properties</term>
<term>Thermoelectric effect</term>
<term>Thermoelectric materials</term>
<term>Thermoelectric power</term>
<term>Thermoelectric properties</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Effet quantique</term>
<term>Confinement quantique</term>
<term>Effet thermoélectrique</term>
<term>Arséniure d'indium</term>
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Nanofil</term>
<term>Nanomatériau</term>
<term>Conductance électrique</term>
<term>Propriété thermique</term>
<term>Dépôt chimique phase vapeur</term>
<term>Electrode commande</term>
<term>Déplacement chimique</term>
<term>Sous bande</term>
<term>Tellurure de gallium</term>
<term>Matériau thermoélectrique</term>
<term>Propriété thermoélectrique</term>
<term>Diffusion(transport)</term>
<term>Nanostructure</term>
<term>Niveau énergie</term>
<term>Facteur limitant</term>
<term>Pouvoir thermoélectrique</term>
<term>InAs</term>
<term>8107V</term>
<term>8107B</term>
<term>6580</term>
<term>8115G</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report electrical conductance and thermopower measurements on InAs nanowires synthesized by chemical vapor deposition. Gate modulation of the thermopower of individual InAs nanowires with a diameter around 20 nm is obtained over T = 40-300 K. At low temperatures (T < ∼100 K), oscillations in the thermopower and power factor concomitant with the stepwise conductance increases are observed as the gate voltage shifts the chemical potential of electrons in InAs nanowire through quasi-one-dimensional (1D) subbands. This work experimentally shows the possibility to modulate semiconductor nanowire's thermoelectric properties through ID subband formation in the diffusive transport regime for electron, a long-sought goal in nanostructured thermoelectrics research. Moreover, we point out the scattering (or disorder) induced energy level broadening as the limiting factor in smearing out the 1D confinement enhanced thermoelectric power factor.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1530-6984</s0>
</fA01>
<fA03 i2="1">
<s0>Nano lett. : (Print)</s0>
</fA03>
<fA05>
<s2>12</s2>
</fA05>
<fA06>
<s2>12</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>One-Dimensional Quantum Confinement Effect Modulated Thermoelectric Properties in InAs Nanowires</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>YUAN TIAN</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SAKR (Mohammed R.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KINDER (Jesse M.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>DONG LIANG</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MACDONALD (Michael J.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>QIU (Richard L. J.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>GAO (Hong-Jun)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>GAO (Xuan P. A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, Case Western Reserve University</s1>
<s2>Cleveland, Ohio 44106</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences</s1>
<s2>Beijing 100190</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Physics, Faculty of Science, Alexandria University</s1>
<s3>EGY</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>6492-6497</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27369</s2>
<s5>354000505494360740</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>36 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0051841</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nano letters : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We report electrical conductance and thermopower measurements on InAs nanowires synthesized by chemical vapor deposition. Gate modulation of the thermopower of individual InAs nanowires with a diameter around 20 nm is obtained over T = 40-300 K. At low temperatures (T < ∼100 K), oscillations in the thermopower and power factor concomitant with the stepwise conductance increases are observed as the gate voltage shifts the chemical potential of electrons in InAs nanowire through quasi-one-dimensional (1D) subbands. This work experimentally shows the possibility to modulate semiconductor nanowire's thermoelectric properties through ID subband formation in the diffusive transport regime for electron, a long-sought goal in nanostructured thermoelectrics research. Moreover, we point out the scattering (or disorder) induced energy level broadening as the limiting factor in smearing out the 1D confinement enhanced thermoelectric power factor.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07V</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60E80</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A15G</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Effet quantique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Quantum effect</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Efecto cuántico</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Confinement quantique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Quantum confinement</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Confinamiento cuántico</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Effet thermoélectrique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Thermoelectric effect</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Efecto termoeléctrico</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Conductance électrique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Electrical conductance</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Conductancia eléctrica</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Propriété thermique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Thermal properties</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Dépôt chimique phase vapeur</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>CVD</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Electrode commande</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Gates</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Déplacement chimique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Chemical shift</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Sous bande</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Subband</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Subbanda</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Tellurure de gallium</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Gallium tellurides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Matériau thermoélectrique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Thermoelectric materials</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Propriété thermoélectrique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Thermoelectric properties</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Diffusion(transport)</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Diffusion</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Nanostructure</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Nanostructures</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Niveau énergie</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Energy levels</s0>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Facteur limitant</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Limiting factor</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Factor limitante</s0>
<s5>33</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Pouvoir thermoélectrique</s0>
<s5>34</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Thermoelectric power</s0>
<s5>34</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>8107V</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>6580</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>8115G</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>035</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000457 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000457 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0051841
   |texte=   One-Dimensional Quantum Confinement Effect Modulated Thermoelectric Properties in InAs Nanowires
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024